The Demopædia Encyclopedia on Population is under heavy modernization and maintenance. Outputs could look bizarre, sorry for the temporary inconvenience

Aus Demopædia

15

Aus Demopædia
Wechseln zu: Navigation, Suche


60px Warning : This page is under construction or needs deeper checking. As long as this shield is here, please consider its contents as provisional.

Please look at the discussion area of this page for deeper details.


Diese Seite ist ein Excerpt der zweiten Ausgabe des mehrsprachigen demographischen Wörterbuches.
Diese Warnung bitte löschen, wenn Sie sie ändern.
zurück nach Einführung | Vorwort | Index
Kapitel | Allgemeines index 1 | Begriffe und Methoden der Bevölkerungsstatistik index 2 | Bevölkerungsstand index 3 | Sterblichkeit und Krankheit index 4 | Eheschliessung und Ehelösung index 5 | Geburtenhäufigkeit, Fruchtbarkeit index 6 | Bevölkerungswachstum und Reproduktion index 7 | Räumliche Mobilität index 8 | Wirtschafts- und Sozialdemographie index 9
Section | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 20 | 21 | 22 | 23 | 30 | 31 | 32 | 33 | 34 | 35 | 40 | 41 | 42 | 43 | 50 | 51 | 52 | 60 | 61 | 62 | 63 | 70 | 71 | 72 | 73 | 80 | 81 | 90 | 91 | 92 | 93

15

150

Die Reihe von Werten, die eine Größe im Laufe der Zeit annimmt, wird als Zeitreihe 1 bezeichnet. Die Analyse einer Zeitreihe läßt mitunter einen langfristigen Trend 2 erkennen, der von Schwankungen 3, Fluktuationen 3 oder Abweichungen 3 (siehe auch 141-2) überlagert wird. Wenn solche Schwankungen in ähnlicher Weise in annähernd gleichen Intervallen wiederkehren, spricht man von zyklischen Schwankungen 4 oder, allgemeiner, von periodischen Schwankungen 4. Am geläufigsten sind in der Demographie jene Bewegungen jährlicher Periodizität, die mit dem Wechsel der Jahreszeiten zusammenhängen: die Saisonschwankungen 5. Irreguläre Schwankungen 6, die nach der Elimination des Trends und der erkennbaren periodischen Schwankungen übrigbleiben, werden auch Restschwankungen 6 genannt. Dabei kann es sich um Störungen durch einmalige, außergewöhnliche Ereignisse (z.B. Krieg) oder um die bei kleinen Zahlen entstehenden Zufallsschwankungen 7 handeln.

151

Manchmal ist es wünschenswert, eine Reihe von beobachteten Daten durch eine ausgeglichene Reihe 1, geglättete Reihe 1 zu ersetzen, die eine größere Regelmäßigkeit aufweist. Das Prinzip der Ausgleichung 1 oder Glättung 1 besteht darin, daß man eine regelmäßige Kurve möglichst eng an die charakteristischen Punkte der ursprünglichen Reihe anlegt. Bei der graphischen Ausgleichung 2 wird die Kurve nach freiem Ermessen gezogen. Bei der analytischen Ausgleichung 3 oder Kurvenanpassung 3 wird nur die Form der Kurve ausgewählt, ihre Parameter werden aber mathematisch bestimmt, z.B. nach der Methode der kleinsten Quadrate 4, wobei die Summe der Abweichungsquadrate zwischen der originalen und der geglätteten Reihe minimiert wird. Von den übrigen mathematischen Ausgleichsverfahren sind die Methode des gleitenden Durchschnitts 5 (gewichtet oder ungewichtet) und die Differenzenmethode 6 (Berechnung mit endlichen Differenzen) zu erwähnen. Manche Ausgleichsverfahren können auch zur Interpolation 7, d.i. die Bestimmung von Werten für Punkte zwischen gegebenen Punkten, und zur Extrapolation 8, d.i. die Bestimmung von Werten für außerhalb der Beobachtungsreihe liegende Punkte, verwendet werden.

152

Erfahrungsgemäß besteht oft die Tendenz, daß befragte Personen ihre Angaben in runden Zahlen 1 machen. Die Bevorzugung runder Zahlen 2 oder Digitalpräferenz 2 betrifft nicht nur die mit Null endenden Zahlen, sondern auch Vielfache von 5 und gewisse andere Zahlen. Man beobachtet insbesondere die Rundung von Altersangaben 3, deren Ausmaß durch einen Rundungsindex 4 ermittelt werden kann. Altersangaben müssen manchmal auch wegen anderer Arten von Altersangabefehlern 5 korrigiert werden.

153

Die Zahlenwerte der demographischen Funktionen (siehe 432-2 und 639-2) werden zumeist in Form von Tafeln 1 präsentiert, z.B. Sterbetafeln (432-1*) oder Heiratstafeln (522-1). Man unterscheidet Periodentafeln 2, Querschnittafeln 2, die auf Beobachtungen für einen relativ eng begrenzten Zeitraum (meistens ein Jahr) basieren, und Kohortentafeln 3, Längsschnittafeln 3, Generationentafeln 3, die auf der Beobachtung einer Ausgangsmasse (Kohorte, 116-2) durch die gesamte Zeit ihres Bestehens fußen. In den Tafeln mit mehrfachem Abgang 4 werden die gleichzeitigen Effekte mehrerer nichtwiederholbarer Ereignisse (201-4) dargestellt, z.B. Erstheirat und Sterblichkeit der Ledigen; am geläufigsten sind Tafeln mit doppeltem Abgang 4. Die Prospektivtafeln 5 enthalten die Zahlenwerte der direkt für Bevölkerungsvorausschätzungen (720-1) einsetzbaren Funktionen, z.B. die Überlebenswahrscheinlichkeit (431-6). Den Abgangstafeln ist gemeinsam, daß sich der Ursprungsbestand (Radix) monoton verringert. Für Massen, die Zu- und Abgänge aufweisen können, z.B. die Verheirateten, werden kombinierte Zugangs-Abgangs-Tafeln 6★ aufgestellt.

  • 4. Man spricht auch von multiplen Dekrementtafeln.
  • 6. Zugangs-Abgangs-Tafel ist die Eindeutschung von Inkrement-Dekrement-Tafel.

154

Wenn es die verfügbaren Daten nicht erlauben, den Wert einer Größe exakt zu bestimmen, dann kann man versuchen, ihn mehr oder weniger genau zu schätzen 1. Der entsprechende Vorgang wird Schätzung 2 genannt, das Ergebnis Schätzwert 3 oder gleichfalls Schätzung 3. Bei praktisch fehlenden Daten ist man auf Mutmaßungen 4 angewiesen, um wenigstens die Größenordnung 5 eines Wertes angeben zu können.

155

Zur Veranschaulichung einer Aussage dienen verschiedene Verfahren der graphischen Darstellung 1. Als Darstellungsarten unterscheidet man Diagramme 2, Schaubilder 2, Graphiken 2 einerseits und Kartogramme 3, statistische Karten 3 andererseits. Man verwendet manchmal schematische Darstellungen 4, um die Beziehungen zwischen Variablen zu verdeutlichen, z.B. im sog. Lexis-Diagramm (437-1). Eine Abbildung, in der eine Achse (in der Regel die Ordinate) logarithmisch geteilt ist und die andere (die Abszisse) metrisch, wird halblogarithmische Darstellung 5 genannt, bisweilen auch ungenau: logarithmische Darstellung. In einer echten logarithmischen Darstellung 6 weisen beide Achsen logarithmische Skalen auf; zur Vermeidung von Mißverständnissen spricht man auch von einer doppeltlogarithmischen Darstellung. Für die graphische Präsentation statistischer Verteilungen (§144) verwendet man u.a.: das Häufigkeitspolygon 7, in dem die Punkte, welche die Klassenhäufigkeiten (144-3) repräsentieren, durch gerade Linien verbunden werden; für kontinuierliche Variablen (143-1) das Histogramm 8, Stufendiagramm 8, in dem die Besetzungsstärke jeder Klasse durch die Fläche eines Rechtecks mit der Klassenbreite als Basis ausgedrückt wird; für diskrete Variablen (143-3) das Stabdiagramm 9, Balkendiagramm 9, Säulendiagramm 9, in dem die einzelnen Klassenhäufigkeiten durch entsprechend lange Stäbchen angezeigt werden. Die Summenkurve 10 dient zur Darstellung kumulierter Verteilungen.

  • 4. Für populäre Darstellungen kann man sich der Bildstatistik bedienen, bei der die Häufigkeit von Merkmalen durch eine entsprechende Anzahl leicht faßlicher Symbole veranschaulicht wird (z.B. Sterbefälle durch Särge).
  • 8. Ein Grenzfall des Stufendiagramms ist das Kurvendiagramm, bei gedacht unbeschränkt kleiner Klassenbreite (Stetigkeit) und unbeschränkt großer Gesamtzahl der Fälle.

* * *

zurück nach Einführung | Vorwort | Index
Kapitel | Allgemeines index 1 | Begriffe und Methoden der Bevölkerungsstatistik index 2 | Bevölkerungsstand index 3 | Sterblichkeit und Krankheit index 4 | Eheschliessung und Ehelösung index 5 | Geburtenhäufigkeit, Fruchtbarkeit index 6 | Bevölkerungswachstum und Reproduktion index 7 | Räumliche Mobilität index 8 | Wirtschafts- und Sozialdemographie index 9
section | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 20 | 21 | 22 | 23 | 30 | 31 | 32 | 33 | 34 | 35 | 40 | 41 | 42 | 43 | 50 | 51 | 52 | 60 | 61 | 62 | 63 | 70 | 71 | 72 | 73 | 80 | 81 | 90 | 91 | 92 | 93